[0149] CPU 103 then determines whether or not there is an input due to the operation of start lever 13 (ST 505). If determined as "YES," a transfer to ST 506 is performed, and if determined as "NO," the input signals are monitored until the start lever is operated. [0150] Next, the probability lottery process is carried out (ST 506). In the probability lottery process, first, a random number for lottery is picked up from the range of "0 to 16383" using random number generator 108 and sampling circuit 109. Then using the prize probability table (FIG. 11) that sets a random number range (prize range) in accordance with the gaming state and number of medals input, the prize range to which the picked-up random number belongs is determined and the corresponding internal winning pattern (winning flag) is determined. [0151] Next, if a bonus winning combination was won internally, a WIN lamp lighting process of lighting up the WIN lamp at a predetermined probability is performed (ST 507). [0152] The game information of main control circuit 101 at the start of the game is then sent to the sub-control circuit (ST 508). For a transmitted command, such as the "start command" among the game information commands in FIGS. 12A, 12B, and 12C, the winning flag determined by the above-mentioned probability lottery process, the current gaming state, the stop table number determined according to the winning flag, etc., are sent. [0153] Next, it is determined, whether or not a predetermined time, for example 4.1 sec, has passed since the one game monitoring timer was set in the previous game (ST 509). If determined as "YES," the one game monitoring timer for the following game is set (ST 511). If determined as "NO," the elapse of the remainder of the predetermined time is awaited (ST 510) and then the one game monitoring timer is set for the following game (ST 511). [0154] Next, CPU 103 controls motor driving circuit 111 and carries out a process of rotating reels 24L, 24C, and 24R (reel rotation process) (ST 512). In the reel rotation process, an acceleration process is carried out starting from the state where the reels 24L, 24C, and 24R are stopped and a constant-speed rotation process is carried out after a predetermined speed is reached. Under this constant-speed rotation state, the stop buttons 15L, 15C, and 15R are activated to enable stop operation of the reels 24L, 24C, and 24R. [0155] Next, CPU 103 determines whether any of stop buttons 15L, 15C, and 15R was operated (whether or not a stop button is on), in other words, whether or not a stop signal has been sent from reel stop signals circuit 118 upon operation of any of the stop buttons 15L, 15C, and 15R by a player (ST 513). If determined as "YES,", a transfer to ST 515 is performed while if determined as "NO," a transfer to the process of ST 514 is performed. In the process of ST 514, whether or not the value of the automatic stop timer is "0" is determined, "Automatic stop" refers to a process in which the reels 24L, 24C, and 24R are stopped automatically after the elapse of a predetermined period of time (for example, 40 seconds) from the point at which the reels started rotating even if stop buttons 15L, 15C, and 15R have not been pushed and the reels are rotating. If determined as "YES," in other words, if the value of the automatic stop timer is "0," a transfer to ST 515 is performed in order to automatically stop the reels, and if determined as "NO," a transfer to the process of ST 513 is carried out in order to continue monitoring the reception of stop operations. [0156] In the process of ST 515, CPU 103 carries out a "slip segment number determination process." In the "slip segment number determination process," the slip segment number of the reel corresponding to the stop button that was subject to a stop operation is determined. Here, "slip segment number" refers to the number of symbols (number of segments) to be slipped before stopping the reel (the actual stop position is called "stop position") from the symbol position (referred to as the "stop operation position") that is displayed in display window 43L, 43C, or 43R when stop button 15L, 15C, or 15R is pushed. [0157] Next, the CPU 103 controls motor driving circuit 111 so that the reel corresponding to the stop button that was subject to a stop operation is stopped after rotating by the determined number of slip segments (ST 516). [0158] Next, the CPU 103 transmits to the sub-control circuit 201 a "reel stop command," which indicates that the reel has been stopped (ST 517). As indicated in the "reel stop command" of the game information command, the reel stop command transmits the stop order status (the number of the current stop operation) and the stop reel status (the reel subject to the stop operation) to the sub-control circuit 201. [0159] Next, the CPU 103 determines whether or not all reels have stopped. If determined as "YES," a transfer to ST 519 is carried out. If determined as "NO," since this means that there remain some rotating reels, a transfer to ST 513 is carried out. [0160] Next, CPU 103 carries out a winning search process (ST 519). In this winning search process, it is determined whether not the mode of stoppage of the symbols displayed in display windows 43L, 43C, and 43R denotes an established winning. If this stop mode denotes an established winning, the winning flag of the corresponding winning pattern is stored in RAM 105. Specifically, the determination is made by collating the code numbers of the symbols on center line L1 with the winning symbol combination table stored in ROM 104. [0161] The prize flag and the winning flag are then compared to see whether or not they match and thereby determine whether or not the current win is normal (ST 520). If determined as "NO," an "illegal error" is displayed and the execution of the game program is interrupted. If determined as "YES" in ST 520, coins are paid out in accordance with the established winning pattern type and gaming state (ST 522). [0162] If the gaming state is changed by completing the current game, a transition process is carried out (ST 523). This process is carried out, for example, when the final winning in the bonus game has been achieved, when a bonus is internally won in the current game, or when the symbols "7-7-7" stop on the active line and the bonus game is started. [0163] Next, the category of the established winning pattern, the gaming state, etc., are sent to the sub-control circuit in the form of a "1 game completion command" as shown in the game information command tables of FIGS. 12A-12C (ST 524).